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CALCULATION OF THE CHARACTERISTICS OF THIN ELASTIC RODS 

WITH A PERIODIC STRUCTURE* 

A.G. KOLPAKOV 

A transfer is made from the three-dimensional theory of elasticity in a 
thin rod to the problem of the theory of beams. The transfer differs 
from the problems of plates discussed in fl, 21 (see also the references 
in /3/), in that the dimensions are reduced, during the passage to the 
limit, by two, i.e. from three (the dimensions of the initial problem in 
the theory of elasticity) to one (the dimensions of the limit problem in 
the theory of beams), In /l, 2/ the dimensions change from three to 
two. This leads to differences in the form of the asymptotic expansion, 
in the methods for studying it and in the appearance of new types of 
cellular problems. 

1. Fonmitation of the problem. Let us consider the region &. which has a periodic 
structure, where the diameter of the transverse cross-section and the size of the periodicity 
cell (PC) P, are of the order of s<f (Fig.1). When E-+0, the region contracts to the 
segment I-1, 11. Let the region be occupied by elastic material whose tensor of elastic 
constants will be denoted by %jgl(x/&) and regarded as its periodic function with PC P,. The 
equations of equilibrium for this body have the form 

s u~~v,,~ dv + E” 1 gv ds = eb 1 fv dv 11.1) 
Qe ‘e 0s 

VV E V (~2~) = (V E H1 (8,): v (x) = 0 when x1 = +I} 

(the functional class If' is defined in 141). Here eij are local stresses connected with the 
local displacements u E V(SL,) by Hooke's law 

i&j = E+ai,kl (x/F,) u*, 2 (1.2) 

Note 1. The presence of a multiplier e-J in Hooke's law is connected with the known 
estimate of the order of the moments of inertia /5/. In the case of plates in the same 
situation, the order was taken into account in /II by introducing the multiplier es. 

Note 2. The power indices a and b in (1.1) take into account the orders of the volume 
and surface forces, and their values will be chosen later. 

2. Asymptotic expansions. We shall seek a formal asymptotic expansion in the form 

u = u(“)(5t) + ELI(l) (Ccl, y) + . . . = ,z* dw) 

v = vi*) (xl) + &v(l) (izl, y) + . . . = 8 ekvfk) 
k;=O 

(2.1) 

m 

oij = E-“U$.‘) (Xl, y) + E-3U$3) (Xl, y) + . . . = 2 t?c@’ 
m==-4 

where z1 E l-1, 11 is the slow variable and y =I X/E the fast variable /6/. The functions 
appearing in the expansion (2.1) are assumed to be periodic in y,, with PC P, = E-~P~. Dif- 
ferentiation operators for the functions of the arguments +, y have the form /6/ 

(2.2) 
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In what follows, we shall use Greek letters to denote the indices which take the values 
2 and 3, and Latin letters for indices which take the values 1, 2, 3. 

Let us now change from problem (1.1) in the variable (depending on s) region Q,, to 
the problem in a fixed region. To do this we make the following change of variables: 

zr-+.rr, "a'& = e-'za (a = 2, 3) (2.3) 

transforming the B, to the region 52, of fixed size. The same statement applies to the side 
surface Q,, i.e. to the surface Fe. After the change of variable (2.3) and after writing 
the derivatives for the functions of the arguments 511 Y in the form (2.2), Eq.(l.l) becomes 

ea S( ajjeG $ + uil 2 dv + ez+a 
I s gv ds = el+b s fv do 

Q, r, Q, 

and VV E v(%), where the functional class V(Q,) is defined in the same manner as V(Q,). 
In Eqs.(l.l) and (2.4) dv, ds are the measures on the corresponding sets and in the 

corresponding variables. 
In the variables y = x/e, the PC P, I becomes P, = e-IP, = {y = x/e: x E P,}. In what 

follows, we shall use (.) =m-'s .dY averaged over PC and the known dependence of the 
P, 

integrals on the functions periodic in Y =x/s, with the integral of their mean (see e.g. 

iii 1 f (xl. x/e) dx = [ <f> (x1) dx, 
-1 

Let us substitute the expansion (2.1) into (2.4). We obtain 

Here and henceforth jy will denote aiayj and lx is alas,. Substituting the 
(2.1) into Hooke's law (1.2) and equating terms of like powers in E, we obtain 

(m) = 
Oil %jkl (Y) U!C%’ f Qijkl (Y) uk, IX 

(m+rl) 

(2.5) 

expansion 

(2.6) 

Here and henceforth m = -4, -3, . . ..k = 0, 1, . . . . 

3. Derivation of the system of equations of the theory of beams. We shall next discuss 
problem (2.5) for various values of m, k and for a suitable choice of the test function v. 

10. Putting k =0 we obtain, respectively, v = v(")(rr) and Vi,ja, = 0. As a result we 
obtain from (2.5), for this case, 

Equating in this expression terms of like powers of e we obtain, taking into account 
the remark concerning the mean values, 
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(3.1) 

over the side surface Y - 
When m>-2, the powers in the equations given above are positive. 
2". Let us put in (2.5) k = 1, and take the test function in the form 

" = "(I) (511 Y) = Ya", (4 + Y,", (51) 

With this choice of k and v relation (2.5) will become 
(3.2), 

(3.3) _+'$ [s"'o!?) (pi%, -+ 43,) -t- s"'+")(y,r~~, + y,~r,:lx)]dv + 

_ 

1 g(y,v, + y,v,)dT = 2 s f(y,v, + y,v,)du 
r, m=--4nl 

Let us bring into our discussion the quantities @Y' = (y,a!r')), which can be regarded 

(cry’) ,1x = 0 (m = -4) 

(lJ;;3’).1, = 0 (m = -3) 

<@),I~ = <gi)v + C/i> (m = -2) 

Here we have put a = b = -2. We denote by (.)V = m-1 s .ds the PC PI (Fig.%) averaged 
V 

in the mechanical sense, as moments /l/. Taking into account the remarks about the mean 
values and equating terms of like non-positive powers, we obtain 

<&') = 0 (a = 2, 3) (m = -4) (3.4) 
-M;;~‘,z + (up) = 0 (a = 2, 3) (m = -3) 

--&i?lx+ (u!;*)) = <giYa)v+ (fiYr_J (m = --a) (a= 2,3) (3.5) 

When m>--2, the powers of E in (3.3) are positive. 
30. Let us write k = 1,m = -4 and take the test function in the form v = "(1) (y) , 

periodic in y,, with the PC P,. In this case #'lx = Oh Under these conditions we obtain, 
from (2.5), 

up,, = 0 ana u!T4) 2, n, = 0 on ITI (3.6) 

where n(y) is the normal to side surface rI of the region Q2,. Let us use relation (2.6) 

with m = -4. Substituting, in accordance with relations shows, Up into (3.6), we obtain 

(%t (Y) ~E"!Iv + aij,r (Y)@IZ (%)),Ju = 0 (3.7) 

with boundary condition 

(%jkI (Y) di?‘~v + %J,l (Y) $,)Ix (51)) nJ (Y) = 0 (3.8) 

and the condition that u(')(Y) is periodic in y, with PC PI. 
We draw attention to the replacement made here (in order to make further entries clearer) 

of the summation index (the index p). 
Eqs.(3.7) and (3.8) lead to the cellular problem (CP). As we known, /I, 2, 6, 7/. the 

CP plays a fundamental role in determining the mechanical characteristics of materials and 
constructions with a periodic structure. Let us introduce the functions Xrp(y) as the 
solution of the "first CP theory of beams": 

(&]kl (Y)x?@ + %l (Y)),Jv = ’ in ‘1. (3.9) 

(aiJkl (Y) x’,ll rY + %J,d (Y)) nJ = ’ On v 

y, with PC P, (Fig.2). 
(3.71, (3.8) with the PC (3.9), we obtain the relation (compare with 

u(1) = X1*(X/E)U$lx(Z1) + V(5r) (3.10) 
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Note 3. Some of the functions X'P can be calculated explicitly, namely 

X$U (y) = -&yc& (a = 2, 3) (3.11) 

trerification. a*~ktX~~~r = --asfla.+ aijal = 0 (the latter with the synrmetry of elastic con- 

stants tensor taken into account /51). 
The functions XrP(y) @ = 1, 2,s) are particular solutions of Cp (3.9) for Various values 

of the index p. The homogeneous problem corresponding to (3.9) (the problem is obtained by 
putting eifpl (Y) = 0) in (3.9)), has the solution X = (0, y,, -ya) T @I) where 9, (9) is an 
arbitrary (so far) function of the argument Xl* We note that in case of the problems with 

the variables y the functions of the argument s, are regarded as constants. 

Verification. CQ,~.X~,~~ = 'p (x1) (Ui,ls - Qm) (the latter by virtue of ,eijrZ = %Zr /5/) . 
From (3.10) and (3.11) we obtain the following expressions (written in coordinate form?: 

u,(') = xp (y) A?%% (zr) - y~~~~~~ (23 + v, (51) (3AZ) 

U&(f) = XRn (Y) 4% t v, (4 + YgW (4 

(c&B = 2,3), B = 
i 

3 when 8=2, s,=O, s,=i, s,=--1 
2 when p=3, 

Substituting (3.12) into (2.6) we obtain,when rn= -4, 

clj4) = @ill (Y) 4)1x (z1) + %jkl (Y) X”, lj/ (Y) u?lx (21) + a*j@ (Y) Sflq (II) (3.13) 

Integrating this expression over the PC PI (taking into account the fact that uCo), F is 
independent of y), we obtain 

<o$*'> = (ai1,l (Y) + %jkl b)x: L,(y)> d?lx f &jps>sf,$' (3.14) 

Let us put j = 1 in (3.14). Since the material of the beam is isotropic, it follows 
that erlaii 7 0 when 81 = 23.32, and therefore the coefficient of cp in (3.14) is equal to 
zero (i.e. 9 does not, in fact,appear in (3.14)). Then Eq.(3.11 when nr = -1 will yield 

((ail11 + %kt x:f i$,> @lx hh = 0 (3.15) 

From the boundary condition u(X)= 0 at 2,=&l and the asymptotic expansion (2.1), 
it follows that I, = 0. Q-(3.15) with the above boundary condition (3.12) takes the - 
form 

u,(" = -ya&s (%) -t v, (LZI) (3.16) 

$1 = V, (4 + SpYjf'P Cd (a, 8 = 2, 3) 

4". Let us now take k = 1, m = -3 and v = v(')(Y). BY analogy with 3" we have, for this 
case, 

When m = -3, Eq.(2.6) yields 

Substituting 
(3.171, 

@ =: 
%Jkl (Y) d?lg $ %Jkl (Y) &‘C (3.18) 

into (3.18) the expression for II(') (3.16) we obtain, taking into account 

(3.19) 

t”iJkl (Y)Uk?b f %kl (Y) Vk,Ix(%)-‘hfn (Yf~d?~~x(@ f 
UiJBl(Y)SRYe'P,lx("l))nJ =o On rl 

(3.20) 

and the conditionthat the function u@)(zl, y) is periodic in y,, with PC P,. 
In order to obtain the solution of the problem (3.19) I (3.20), we introduce the functions 

xza (Y) I which represent the solution of the following "second PC theory of beams of the first 
type" 

(3.29) 

XSU (El) is periodic in y, with PC PI, and the function XS (Y) represents the solution of 
the "second PC theory of beams of the second type" 
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(%jkI (Y) Xi, YI + %I (Y)SflY6) nj = 0 on Y 

x3 (Y) is periodic in y,, with PC P,. 

Note 4. The problem of the second type has no analogue in the theory of plates /I, 8/, 
and is connected with torsion of the rod (beam). 

Taking into account relations (3.9) and (3.21), we obtain 

u'*) = Xrk (Y) Vk,lz (51) + x’“(,‘)d?)lrlx(~~) + x'(y) (p&) (3.23) 

Taking into account Note 3, we can rewrite relations (3.23) in the following coordinate 

form: 

uk" = xp"(Y)~I,Ix(r,) + x~(Y)ulq)lllx(rr) + XR"(Y)cp, .(r,) (a,6 = 2,3) 

Substituting (3.24) into !2.6) for m = -3 and collecting terms, we obtain 

'Q) = (Qn (Y) f %jkI (Y) xi? ly (Y))~I, 1x(21) 4 

(-cii~r (Y)Ya + %jkl (Y)-GTly (Y))&?IxIx (51) + aijkl(Y)~~,l,(y)cp,l,(II) 

(3.25) 

Let us now integrate Eq.13.25) over the PC P,. Remembering that the functions V,U@) are 

independent of y, see (2.1) and (3.10), we obtain 

('$'> = <aijll i- %jklX? lu> ul, Ix + (3.26) 

<- aijllya + a2jklXFlk) dI!IXlx + (UijkLZ, /g> (p,ls 

Multiplying both sides of Eq.!3.25) by yp, and integrating over PC P, we obtain, for j = 1, 

&?) = <yfi (%u + %klx:t ly)) VI, Ix + (Yp (-- ailllya + %,kiX;:i,)> d&l~+ (3.27) 

(y&k&, lu> (P,lx 

From (3.5) we obtain, for m = -3, i = 1, 

(3.28) 

(3.29) 

(3.30) 

We shall see later that the quantities (3.30) represent the elastic characteristics of 

the beam. 
Let us consider Eq.(3.5) for m = -3. i = p (fi = 2,s). We have for this case ,?@"' 

UP,IX + 

(a%!'> = (Kpy,L)y t (fr.!/n). Also, by definition, #$' = (~~0::'). As a rule, in mechanics we con- 
sider not .][I-"' 

%fi I but the quantity 
Since 

‘%I = <crl;l:")~py~) which represents the torsional moment. 
(&')3'sryr.) = .i;" - M.$i3', we obtain 

KIX = <&Y,)v - <y3yz), + <f*Y& - <fBYP) (3.31) 

Here we have used the relation (IQ) = (o&2'), which follows from the fact that o&2' = 

(J:r?) /5/. 

4. Limit problem. Let us collect together all relations obtained above (with the source 
of each relation quoted on the left-hand side of the relation) 

(3.26), i = j = 1: (#)) = d,T1 1x - A:,u$)~,,, + B,,“cp 1 

(Al), f=j=l,“~:-:3: <oj;3’>,,:=0 

, x (4.1) 

(4.2) 

(3.27), i = 1: M;;” = ‘&,Vl, Ir-_4A&plu$:11,1, i_ B;lcp,,, (4.3) 
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(3.28), - &pf 
n 

c&Ix -5 (G.9 = <&@,-t u&-z> (4.4) 

(3.2% &?'>,zx = (ge>, + (I,$ (4.5) 

The resulting limit system represents a problem in the theory of beams. Here 1:. tic is 
the axial deformation, u$lXIX are the curvatures and cp is the angle of torsion. The relations 
(4.2), (4.4), (4.5) and (4.7) represent the equations of equilibrium, and (4.1), (4.3) and 
(4.6) the defining relations of the beam. The coefficients of the latter are found from the 
solution of CP (3.91, (3.21) and (3.22) representing three-dimensional problems of the theory 
of elasticity with boundary conditions of special type. 

Let us consider the boundary conditions. From the asymptotic expansion (2.11 and boundary 
condition u (x) = 0 we have, for zI = 21, 

u(O) (&I) = 0, u(1) (&I, ;v) = 0 (i.S) 

Substituting expressions (3.16) into (4.8), we obtain 

- ~au~~Ix($-l)+ $7, (-&I) = 0, I-,(_ 1)-t Sp1/jj9(& 1) = 0 

for all Yz, $3 (8 = 2, 3)* and from this it follows that 

V* (21) = 0, u,(@) (&$) = 0, u$;,X f&-l) = 0, fF (&I) = 0 (4.9) 
(a = 2, 3) 

Relations (4.9) represent the covering set of boundary conditions for problem (4.1)-(4.7). 

5. ExunrpZe. A cyZind&caZ rod. First CP. Let the region Oe be a cylinder i-1. I1 X S, and 
let the elastic constants of the material ~,jkz(y) depend only on the variable Yz. 2, (but not 
on YJ. In this case the first local problem will have a solution of the type 

X,"(Y) = 0. X$f (p) = Xs'l (y*, ys), (@ z 2, 3) (5.1) 

It is clear that the functions (5.1) are periodic in YI on PC P,. Substituting (5.1) 
into (3.9), we obtain a two-dimensional problem in terms of the functions 

(5.2) 

where (nl is the outer normal to ss,). Moreover, if the material of the beam is homogeneous, 
the solution of problem (5.2) can be found in explicit form Xa'l= IVfi~B (no summation over p). 
The constants (W,) are found by substituting the above expression into (5.2), and in terms 
of the Lame constants h,~ /5/ they are IV, = W, = i.'Z (1" + ?!I). 

The tensile stiffness of the rod will, in this case, be equal to 

where mes Se is the area of S, (the area of transverse cross-section of the rod). 

Second CP of the first type. We shall seek the solution of (3.21) in the form 

xla(Y) =o, XF(Y) = $=((YP,Yll) (e,B = 233) 

It is clear that the function is periodic in y,. The equation from (3.21) for this 
function (at i== i) takes the form 

(a,jklX~~~y-"IjllV,),jv = (a1f?p5X~~-aalf,~~Y~x)~fi =O 

The last equation holds for isotropic materials /5/ by virtue of alar3 = 0, alpll = 0 when 
jl. 7, 6 = 2.3 The first relation from the boundary conditions (3.21) also holds (it should be 
noted that the first coordinate of the normal to y, in the case in question, is equal to 
zero). As a result we obtain the following two-dimensional problem: 

(a,bv~x:~-~Xpll~cr).A =o in s1 (5.3) 

(~~.,.~xg-- Q~~Y,)~~~=O on asI 
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The flexural stiffness of the beam is given by the expression 

A&= (11; (%llYX -%l.>+J' )‘<p Y“< ), (x, p, y = 2, 3) 

In particular, the flexural stiffness in the plane Oz,+a is 

A$, = <PIIIIW~> - i!i$7,l,,S&\ (1, = ?. 3) (5.C) 

The first term on the right-hand side of relation !5.4) represents the flexural stiffness 
of the beam calculated in accordance with engineering theory 151. We see that the second term 
on the right-hand side of (5.4) is, in general, non-zero (since X:1 ,i 1. !,a) = 0 is not, in the 
general case, a solution of problem (5.3)). 

Second CP of the second type. We shall seek a solution of problem (3.22) in the form 

X3().) = ?I,'(!/,. ?A), s :‘, (,) 10 (fi _ 2. ::) 

The periodicity of the function (5.5) in !,; is obvious. Substituting relations (5.5) (‘.” 
into (3.22), we obtain 

((Ii&;,.< -- aibAl’s~r!ffi) ,d (5.6) 

Since +d17 = 0, amgl = 0 when iv 6, $, Y= %3 for isotropic materials, it follows that there 
remains, from (5.6), only a single non-trivial equation (when i == i) for S," (1~~. !ft): 

~%yX~,Y t a~pr*~~ji),~ = 0 in St 
Remembering that in this case !z,= 0. we obtain the corresponding boundary condition 

(Ql& - "16rlsg~~)n*1 = 0 on dsl 

Note 5. In the case of frameworks and similar, highly porous constructions, we can use 
the method from /g-13/ to solve the CP. 

6. &I the va'lidation of the asymptotic expressions. Using the technique of constructing 
the asymptotic formulas analogous to that used in /l/, we can validate the results in the same 
manner as in /l/. Let us introduce, in the region Q1, the function (the normalized displacement 
field) 

where (I~,.~Q.u~) is the solution of problem (l-l), (1.2) in the variables z, and consider the 
asymptotic expression for the displacement field (2.1) with an accuracy up to terms of order r: 

Let us introduce the normal displacement field corresponding to (6.1) 

Proposition. U' -U is weak in I'@,) as F-O. 
The proof is obtained by reproducing (with the technical corrections arising from changing 

the dimensions of the problem from three to one and not from three to two as in /l,f) the 
arguments of Sect.3 (a priori estimates) and 6.3 (proof of the convergence) of /l/. 

Note 6. The proposition leads to the assertion on convergence, without taking into 
account the torsion (the terms corresponding to torsion of the rod are of higher order than 
those corresponding to normal flexures). The validation of the asymptotic formulas taking the 
torsion into account (e.g. when l/C' ".= II) is not the same as in /l/ (since there is no torsion 
in the plates discussed in /l/). 

Note 7. For a cylindrical rod of coaxial construction the problem was studied in detail 
in 1141. The asymptotic formulas given above for these rods are identical with those used in 

/14/. 



365 

REFERENCES 

1. CAILLERIE D.,Thin elastic and periodic plates-Math. Meth. in the Appl. Sci. 6, 1984. 
2. KOHN R.V. and VOGELIUS M., A new model for thin plates with rapidly varying thickness. 

Intern. J. Solids and Struct. 20, 4, 1984. 
3. KALAMKAROV A.L., KUDRYAVTSEV B.A. and PARTON V-Z., Asymptotic methods of averaging in the 

mechanics of composites of regular structure. Itogi Nauki i Tekhniki, Ser. Mekhanika 
Deformiruyemogo Tverdogo Tela. VINITI, Moscow, 19, 1987. 

4. LIONS J.-L., and MAGENES E., Problemes aux limites non homogenes et applications. V.l. 

Paris, Dunod. 1968. 
5. RABOTNOV YU.N., Mechanics of a Deformable Solid. Nauka, Moscow, 1979. 
6. BAKHVALOV N.S. and PANASENKO G.P., Process Averaging in Periodic Media. Nauka, Moscow, 

1984. 
7. BENSOUSSAN A. and LIONS J.-L., Papanicolaou G. Asymptotic analysis for periodic structures. 

Amsterdam, North-Holland Publ. Comp., 1978. 
8. KOLPAKOV A.G., Computation and design of layered plates. PMTF, 4, 1989. 
9. KOLPAKOV A.G., On determining the averaged characteristics of elastic frameworks. PMM, 49, 

6, 1985. 
10. KOLPAKOV A.G., Stiffness characteristics of stressed non-homogeneous media. Izv. Akad. 

Nauk SSSR, MTT, 3, 1989. 
11. KOLPAKOV A.G., Averaging the stiffness of thermoelastic frameworks. Izv. Akad. Nauk SSSR, 

MTT, 6, 1987. 
12. KOLPAKOV A.G., Mechanics of composite frameworks. 6th Congress of Theoret. and Appl. 

Mechanics, Varna, 1989. 
13. KOLPAKOV A.G., On dependence of velocity of elastic waves in composite media on initial 

stresses. Second World Congress on Computational Mechanics. 1990. FRG, Stuttgart, Extended 
Abstracts of Lectures. 1990. 

14. KOZLOVA M.V., Averaging the three-dimensional problem of the theory of elasticity for a 
thin non-homogeneous bar. Vestnik Mosk. Univ. Ser. 1, Matematika, Mekhanika, 5, 1989. 

Translated by L.K. 


